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A general gauge graviton loop calculation 

D M Capper 
Department of Physics, Queen Mary College, Mile End Road, London E l  4NS, UK 

Received 14 May 1979 

Abstract. The one-loop graviton contribution to the graviton self-energy is calculated in a 
two-parameter gauge. The Slavnov and BRS identities are shown to be satisfied. A 
one-parameter family of gauges is also found in which the appropriate counterterm is part of 
a generally covariant object. Contrary to previous speculation, the spin-two and spin-zero 
parts of the counterterm can change sign. The significance of this result is discussed in detail. 

1. Introduction 

It might be thought that the renormalisation problem in quantum gravity could be 
resolved by adding matter in such a way that cancellations occur between the various 
loops contributing to a particular Green function, such as the graviton self-energy. 
However, it was shown some time ago that both in theory (Capper and Duff 1974, 
Deser and van Nieuwenhuizen 1974) and in practice (Capper et a1 1974, Capper 1975a; 
for a review, see Nieuwenhuizen 1977) all the contributions to the infinities of a diagram 
seem to come in with the same sign. This led people to abandon any hope of obtaining a 
renormalisable theory of gravity and instead on-mass-shell finiteness was looked for 
(for a review, see van Nieuwenhuizen 1978). However, one problem has always been 
that, in a naive Feynman diagram approach, the counterterms required for the graviton 
loops are not part of a generally covariant object such as J-gR2, etc, whereas those of 
the matter loops certainly are. In a previous paper (Capper and Namazie 1978) a 
one-parameter graviton gauge breaking term was used in an attempt to find a gau e in 
which the countertzms for the one-loop graviton self-energy were part of &R2, 
J ~ R , , . R c ” ”  and J-gRNVapR ILuOLp. The attempt was unsuccessful and the surprising 
feature was that this appeared to be because we insisted on the real world being 
four-dimensional. In this present paper we show that this failure was merely the result 
of an unfortunate choice of gauge-breaking term and graviton field parametrisation. 
Moreover, by employing a two-parameter gauge-breaking term, a one-parameter 
family of gauges can be obtained which all give rise to self-energy counterterms which 
are part of a generally covariant object. We also show that there are ranges of values of 
the gauge parameters for which the coefficients of the counterterms have the opposite 
sign to those of matter loops. Thus, by introducing appropriate matter interactions, it is 
possible to obtain a finite graviton self-energy. The possible significance of this result is 
discussed in the conclusion. 

0305-4470/80/010199 + 15$01.00 @ 1980 The Institute of Physics 199 



200 D M Capper 

2. An outline of the general gauge graviton loop calculation 

Since similar calculations have been reported previously in the literature (Capper et a1 
1973, Capper and Namazie 1978), we merely give an outline here, mainly in order to fix 
our notation. In fact, such considerable use was made of the algebraic computer 
program SCHOONSCHIP (Strubbe 1974) that it would be impossible to describe the 
calculation in any detail. 

We start from the action for pure gravityt 

where, in the spirit of dimensional regularisation (’t Hooft and Veltman 1972, Ashmore 
1972, Bollini and Giambiagi 1972, for a review see Leibbrandt 1975), n is the 
dimension of space-time. In contrast to Capper and Namazie (1978), we define the 
graviton field via 

g,, = rlWv + Wrv. (2.2) 
The most general gaussian gauge-breaking term which is local and bilinear in the fields 
and derivatives is of the form: 

Z B  = ( a a , 4 , v + p a v 4 p p ) * .  (2.3) 

PfJpu = 3(dwpeUu + druevp + dupera + d u g r p  1 
If we define projection operators (Delbourgo and Rambn Medrano 1976, Stelle 1977) 

(2.4) 

where 

dWv = - ( p w p v / p 2 )  
2 e,, =p,pVlp 

then the graviton propagator Gap,,,, is 

(2.10) 

(2.11) 

t The notation used is specified in Capper and Namazie (1978). In particular, we use a +--- metric. 
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The ghost propagator G,,, is given by 

201 

(2.13)  

and the ghost vertex (see figure 1 )  is 

vpq,A,,(ki, k2, k3) 
= -i(2.rr)"[kl . k3SP,SuA + k:SpA&, + k 1 ~ k 3 ~ S ~ ,  + k3ak3hSP1L + kl,k3pS~u 

+ klpklwSuA + (P/a)(2klhk3,Sp, + 2k3,k3_Sp, + kiAkl,Spu + k3Ak~,Spo)l, 
(2 .14)  

with implicit symmetrisation over p and U. The three-graviton vertex was worked out 
by computer, and little purpose would be served by quoting it here. Suffice it to say that 
it appeared to agree with that of De Witt (1967) .  

Figure 1. The graviton-fictitious particle vertex. The fictitious particles 5, and qA have 
momentum labels k3 and k2 respectively. The graviton field & has a momentum label k l .  

If we define Taparpf as the graviton self-energy shown in figure 2 and write it as 

Figure 2. One-loop contributions to the graviton self-energy. 

then we obtain for the pole terms? 
T1=[245 - 435 2 1461 2 2 1373  3 257 4 

8 + 2 : : 5 a p + y a p 3 + x a  + 7 a  p + 1 6 a  p + x a  
+ 3 0 ( p ~ / . ~ )  + 1 2 0 ( p ~ / ~ ~ ) +  1 8 0 ( p ~ / ~ ' )  + 1 2 o ( p i a )  +Y(p3/4 
+ y 5 p 2 + ~ p ~  + y ( p 4 1 a  2)~7,,(a + p)4 (2 .16)  

f The amplitudes TI to T5 were, in fact, evaluated for general n. The results are not quoted here since they are 
very complicated, but they were used to verify the n-dimensional Slavnov identities of Q 3. 



h 2 K 2  ?= (with 2w = n) .  
60(w - 2) 

(2.21) 

The evaluation of the integrals involved in this calculation is explained in appendix 1. 
The validity of equations (2.16)-(2.20) can be checked by substitution in the following 
Ward identities, obtained as in Capper et a1 (1973): 

T3 + T5 = 0 

Ti + T2 + 2 T4 + 2 Ts = 0. 

(2.22) 

(2.23) 

3. The Slavnov and BRS identities 

The relevant Slavnov identities may be derived as Capper and Ram6n Medrano (1974) 
and are contained in the equation 

2a 
F ( T ~ , ~ ( Z ) ( ~ A ~ , A  (Y  1 + P ~ A A , ~ ( Y ) ) )  = (T(Awv~  (215~ ( z ) T ~ ( Y  1)) 

A ~ A  = K - ’ ( s ~ A ~ ,  + s , A ~ , ) + ( # J ~ , ~ ,  +4Arav+aA4wu) (3.2) 

(3.1) 

where 

and ,$A and vP are the fictitious particle fields?. The above identity was verified using the 
T’sof equations (2.16)-(2.20) and, moreover, it was also verified for the n-dimensional 
versions of these equations. This is an extremely stringent check on the reliability of our 
calculations, involving as it does the independent evaluation of three sets of diagrams 
(see figures 2,3 and 4) which are functions of the three independent parameters CY, p, n. 

U 

P- 4 

Figure 3. The lowest-order one-loop contribution to (T(A,, ,(z)5,(z)q,(y))) .  

t See figure 1 and Capper etal(1973), Capper and Ram6n Medrano (1974) and Capper and Namazie (1978). 
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Figure 4. The one-loop contribution to the fictitious particle self-energy. 

However, it is actually more illuminating to consider the BRS identities and it was 
originally hoped that these would enable us to pick out a combination of gauge 
parameters which would render the counterterm for figure 2 part of a generally 
covariant object. 

Let us define, as in Delbourgo and Ram6n Medrano (1976)1, 

(3.3) 
where the projection operators P(i )  are now in four dimensions since we are only 
interested in the pole terms. Then we find that 

E1 = T3 

E2 = T3+ Ts 

E3 = Ti + T2+ 2T3 + 2T4 +4T5 

E4 = T2 + 5T3 

E5 = T2 + T4. 

Defining 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

Y = 2PIa (3.9) 
and 

2 
x=CY 

we obtain 

9 i y 3 + & y 4 ) + 5 ( 4 9 + Y y +  m 2  2 y + T Y  6 3 3  +ZY 9 4  ) 
64x 

E1 = ( ~ ( 3 2 +  * 3y+4y + 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

? We keep with the notation of Delbourgo and Ramdn Medrano (1976), although El is the coefficient of the 
spin-two projection operator and E2 the coefficient of the spin-one projection operator! 



2 04 D M Capper 

5 1 f 
64 X (1 + i y  )” 

E5 = -( (55 + l l y  - 59~’ -31y3)  +-(-217-391y - 235y2-45y3)) - 

The condition that the counterterms for figure 2 are contained int 
I- 

- 4 - g  A 9  = [aR2 + b(R,,Rwu - $R2)] 
60(w - 2 ) ( 4 ~ )  

is that E5 = 0, which gives a condition for xS:  
217+ 391y +235y2+45y3 

X =  
55-k l l y  -59y2-31y3 * 

With this condition imposed, we obtain 

(3.15) 

(3.16) 

(3.17) 

b=4E1. (3.18) 
The functions El and E4 are plotted in figures 5 and 6 and displayed in detail in 
appendix 2. For comparison, the corresponding values for the photon are 

1 a =3E4 

a=O b = 12 

and for a massless scalar field 
5 a = g  b = 1. 

(3.19) 

(3.20) 

- L  -3 -2 -1 0 i 
Y 

Figure 5. A graph showing how (A) E l / f  and (B) E4/f vary with the gauge parameter y, 
subject to the condition E5 = 0. 

?If, in the spirit of Capper (1979), we look for n-dimensional counterterms, then equation (3.16) could 
involve R,,BR’”UP; however, due to the fact that the bilinear part of the Gauss-Bonnet formula directly 
generalises to n dimensions, the coefficient of such a term cannot be found from a self-energy calculation. 
j: Note that we do not obtain generally covariant counterterms for p = 0, a = 03, i.e., for y = 0 we get x # CO (cf, 
however, 5 11 of Stelle 1977). 
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Figure 6.  A graph showing in more detail than figure 5 the region in which (A) E J f  and (B) 
E,/? go negative. 

For a non-minimally coupled scalar field, the coefficient a varies and can be made zero, 
but not negative. The coefficient b is unaffected by non-minimal couplings. 

To verify the BRS identities we follow Debourgo and Ram6n Medrano (1976). 
Defining WwVp and gVp as the amputated parts of the amplitudes shown in figures 3 and 
4 respectively, we may write 

(3.21) WwVp = pp d,yF + ppeWvG + d,,pv + dvpp,H 
and 

gVp = d u d  +ev& (3.22) 

Computer calculations show that the infinite parts of A,  B, F, G, H are given by? 

A =  64(1:+y)3[ y3( 97-:) + Y2(  481 -?) + y( 847-$) + (471 -7)]1 49 - (3.23) 

B =  64( 1 l5 + $y ) ,[y4(8-$)+y3(143-?) 

+ y2(  479 - F) + y( 593 - y) + (24 1 - 31 7 

F =  
X 

(3.24) 

t Expressions for F, G, H, A, B for general n were found implicitly when the Slavnov identity of equation 
(3.1) was verified. 
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X X X X 
G =  

(3.26) 

H =  
64(1 + $ y )  X 

(3.27) 

Using the results of Zinn-Justin (1974) and Delbourgo and Rambn Medrano (1976), 
the general gauge BRS identities are 

Ez=O 

E 3 = 0  

(3.28) 

(3.29) 

F=-ES (3.30) 

and the ghost equation of motion gives 

A = - H  (3.31) 

B = -$yF - (1 + $y)G. (3.32) 

It can be verified that equations (3.28)-(3.32) are indeed satisfied by equations 
(3.23)-(3.27). As can be seen, the condition for generally covariant counterterms is 
that 

E5 = 0, (3.33) 

which simply gives us an equation for x in terms of y, i.e., equation (3.17). 
Unfortunately, the BRS identities do not seem to give any motivation for choosing any 
particular combination of x and y which satisfy this equation. 

Figure 7. A graph showing how the gauge parameters n and y vary, when constrained by the 
condition E5 = 0. 
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A graph showing values of x for real values of y is given in figure 7 .  Various simple 
values of x and y are given in table 1 .  The present calculation does not seem to indicate 
that any special significance should be attached to these values?. In fact, the gauge 
y = -2, x = 4 must be excluded since it is singular. 

Table 1. 

X Y 

1 -1 
8 -2 

-rj -4 

1 

4. Some other one-loop diagrams 

One is of course really interest in many diagrams other than just the graviton 
self-energy. Two of these, which are readily evaluated using the results outlined in 
appendix 1 ,  are the graviton contributions to the photon and scalar self-energies shown 
respectively in figures 8 and 9. The infinite part of the photon self-energy ~ ~ ~ ( p ’ )  is 
given by 

Figure 8. The one-loop graviton contribution to the photon self-energy. 

Figure 9. The one-loop graviton contribution to the scalar self-energy. 

For the infinite part of the scalar self-energy ~ ( p ’ )  we obtain 

It is noteworthy that values of x and y can be found for which either or even both of the 
expressions in equations (4 .1)  and (4 .2)  in fact vanish. 

t A check was made on the computer results by substituting the values y = -5, x = & in equations 
(2.16)-(2.20) and checking by hand that these led to the results implied by figure 6. 
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5. Conclusion 

The original motivation for this work was to investigate the rather strange result of 
Capper and Namazie (1978) which seems to indicate that there is something special 
about four-dimensional space-time which makes it impossible to choose a gauge 
parameter such that the self-energy counterterms are generally covariant. This is why 
Feynman diagram techniques are employed rather than the background field method. 
A related calculation has in fact been performed by Kallosh et a1 (1978) using the 
background field technique. They found that it was even possible to choose gauge 
parameters which made all the off -mass-shell one-loop graviton counterterms vanish 
(albeit for complex gauge parameters). As shown in appendix 2, our approach does not 
lead to this conclusion. However, there is not necessarily an inconsistency since the two 
techniques are somewhat different and may not lead to the same off -mass-shell 
amplitudes. Another possibility is that we could introduce a weight parameter for the 
graviton field which might lead to the vanishing of off-mass-shell counterterms in our 
approach. It is impossible to say whether or not this would remove all one-loop 
divergences without a detailed analysis of the BRS identities. In view of the results of 
Capper (1979) this seems unlikely. 

We have also demonstrated in this paper that for certain ranges of values of the 
gauge parameters, the coefficients of the spin-zero and spin-two parts of the coun- 
terterms (Le., E4 and El respectively) can change sign. At first it might be thought that 
this contradicts the theorems of Capper and Duff (1974) and Deser and van Nieuwen- 
huizen (1974), as well as our experience of other field theories such as quantum 
electrodynamics. Apparently the presence of graviton, as opposed to matter, loops 
renders these theorems inapplicable. The reason for this is explained in detail in 
appendix 3 .  

Since it seems possible to choose a gauge in which the graviton contributions to the 
graviton self-energy counterterm are opposite to those of matter, it is worthwhile 
speculating on the possibility of an exact cancellation. If gravity is only allowed to 
couple minimally to matter, then the matter counterterms (corresponding to El and E4)  
can only vary in discrete steps. Introducing non-minimal couplings would enable an 
exact cancellation to occur. However, since we have a one-parameter family of gauges 
for which Es vanishes (see figure 6) the number of particles coupling to gravity would 
vary with the gauge! This is, or course, unreasonable and a more likely possibility is that 
a consideration of other one-loop graviton diagrams fixes the gauge uniquely. Indeed it 
may even turn out to be impossible to find a gauge in which the counterterms for all the 
infinity of one-loop g-aviton diagrams are of the same form as those due to matter loops. 
Even if this is not the case, then to get cancellations for all one-loop diagrams we are 
faced with the almost impossible task of choosing the correct numbers of each type of 
particle together with their various non-minimal interactions. A more promising 
approach might be to hope that a particular supergravity theory is the ‘correct’ one and 
to use supergraph techniques (Capper 1975b, Capper and Leibbrandt 1975) to 
demonstrate that the theory is finite, if indeed such a theory exists. 
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Appendix 1. The evaluation of one-loop integrals 

We present some results for one-loop massless integrals which are more powerful than 
those given by Capper et a1 (1973) and Capper and Namazie (1978). 

First we define? 

= palpa2pa3pa417(n, m, i) + ('03a4PalPOZ + 'aZ~4PCYlPa3 + 'a2U3PaIP-4 

+ '*la4paZPa3 + 'aIa3Pa2Pa4 + &1az~a3~04)18(n, m, i) 
+ ( s U 1 0 4 s U 2 a 3  + so110L3soLzc(4 + sa1a2sa3a4)19(n, m, i). (A.5) 

Unfortunately there are over 500 IK(n ,  m, j ) ' s  to evaluate even if we restrict ourselves 
to those integrals arising from the interactions considered in this paper! But we can 
derive the following identities: 

I K ( &  2, i) =p21K (a, j)-2IK(n, j f 1) f I K ( n  - 1, j )  

+ 2p21K(n - 1, j )  + 4 1 K ( n ,  j + 2) + I K  ( n  - 2, j )  

I K  (n ,  3, i) = I K ( n ,  j ) *  

(A.6) 

(A.7) 

(A.8) 

I K  (n ,  1, j )  = ( p')'IK (n, i) -4p21K (n ,  j + 1) -41K ( n  - 1, j f 1) 

where 

Equations (A.6) and (A.7) result from multiplying the integrands of equations (A.1)- 
(A.4) by the appropriate powers of (p  - q)' /(  p - 4)' to render all the denominators of 
the form [(p -q)'I3. Use can then be made of the further identities 

I1(n, i) = i) . (A.9) 

12(n, i) = ~ ( n ,  i + 1)/p2 

13(n, j )  = [ ~ ( n  - 1, j )  - (p')- '~(n, j +2)]/(2w - 1) 

L ( n , j )  =[2w(p2) -21(n , j+2) - (P2) -11(n  - l,j)]/(2w -1) 

(A.lO) 

(A. 11) 

(A.12) 

~ ~ ( n ,  j )  = [2(w + i)(p2)-3~(n, j + 3) - 3(p2)-'1(n - I ,  j + 1 ) ] / ( 2 w  - 1) (A.13) 

b ( n , i ) = [ ( ~ ' ) - l I ( n - l , j +  1)-(p2)-'1(n,j+3)]/(2w-1) (A.14) 

t The integrals (A.l)-(A.5) are in Minkowski space, but for convenience we have omitted all factors of ie. 
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1,(n, j) = [ ( ~ ’ ) - ~ ( 4 w ~  + 120 + 8)1(n, j + 4) 

- ( p 2 ) - 3 (  12w + 12)1(n - 1, j + 2) + 3( p)-’I(n - 2, j)]/(4w2 - 1) (A. 15) 

1~(n,i)=[(a’)-’(2w+3)1(n -1, j+2)-(p2)-32(w + l ) ~ ( n ,  j + 4 )  

- ( p ’ ) - ’ ~ ( n  - 2, j)]/(4w2 - 1) (A.16) 

19(n, j)=[-2(p2)-’1(n-1, j+2)+(pZ)-’1(n, j+4)+I(n-2 ,  j)]/(4w 2 -1). (A.17) 

Equation (A.9)-(A.17) can be obtained by various combinations of tracing over 
Lorentz indices and taking scalar products with various numbers of pm,’s .  We are now 
left with 28 integrals to evaluate, This can be done using the technique outlined by 
Capper et a1 (1973) and we obtain 

1(3,8) =&(p’)’(4w4-52w3+ 127w2+ 1610 +48)1 

1(2,8)=g!3(p2)3(-4~3+ 16<02+65w +48)1 

1(1, 8)=&(p2)4(w+2)(2~ + 5 ) 1  

1(3,7) =$p2(4w4- 52w3+ 155w2+7w +6)1 

1(2,7) = &(p2)2(w + 1)(--2w2 + 1 l w  +9)1 

1 ( l , 7 ) = & ( p 2 ) 3 ( W + 2 ) ( 2 w + 3 ) 1  

1(3,6)=&(4w4-52w3+179w2-125w +30)1 

1 ( 2 , 6 ) = & p 2 ( 2 ~ + 1 ) ( - 2 ~ ’ + 1 1 0 + 3 ) 1  

1(1,6) = &p’(w + 1)(2w + 3)1 
1(3, 5)=$(p2)-’(4w4-52w3+ 199w2-235w +90)1 

1(2, 5)=&!J(-2w2+11w-2)1 

1(1,5) = i p 2 ( 2 w  + l ) (w + 1)I 

1 ( 3 , 4 ) = $ ( p 2 ) - 2 ( 4 ~ 4 - 5 2 w 3 + 2 1 5 ~ 2 - 3 2 3 w  + 162)1 

I(2,  4 ) = $ ( p 2 ) - ’ ( - 4 w 3 + 2 4 ~ ’ - 2 3 ~  +6)1 

I(1, 4) =aw(2w + 1)I 

1(3,3) =i(p2)-3(20 -3)(4-U)(-2w2+ 15w - 19)1 

1(2,3) = (p2)-’(0 - 1)(-202+ l l w  -9)1 

1(1,3) = (p2)-’$w(2w - 1)1 

1(2,2) = (p2)-3(2w - 3)(-2w2 + 1 iw - i i ) ~  

1(1,2) = (p2)-2(2w - l ) ( w  - l ) (w - 1)1 

1 ( 3 , 2 ) = ( p 2 ) - 4 ( 4 - ~ ) ( 2 ~  - 3 ) ( - 2 ~ ’ + 1 5 ~  -23)1 

1(3, l ) = ( p 2 ) - s 2 ( 5 - ~ ) ( 4 - ~ ) ( 2 ~  - 3 ) ( 2 ~  - 5 ) 1  

1(2,1) = ( ~ ’ ) - ~ 2 ( 4  - w ) ( ~ w  - 3 ) ( 2 ~  - 4)1 

~ ( i ,  1) = (p2)-32(w - 1 1 ( 2 ~  - 3 1  
1(3, O)=(p2)-64(5-w)(4-~) (2~ -3)(20 - 5 ) 1  

(A.18) 

(A.19) 

(A.20) 

(A.21) 

(A.22) 

(A.23) 

(A.24) 

(A.25) 

(A.26) 

(A.27) 

(A.28) 

(A.29) 

(A.30) 

(A.3 1) 

(A.32) 

(A.33) 

(A.34) 

(A.35) 

(A.36) 

(A.37) 

(A.38) 

(A.39) 

(A.40) 

(A.41) 

(A.42) 



A general gauge graviton loop calculation 211 

I(2,O) = (p2)-'4(4 - w ) ( ~ w  - 3 ) ( 2 ~  - 5)1 
~ ( i ,  0 )  = (p2)-42(2W -3)(zW -4)1 

where 

and 

(A.43) 

(A.44) 

(A.45) 

(A.46) 

No doubt there are more identities which could reduce the number of integrals to be 
evaluated even further; however, it is safer to leave some redundancy to enable the 
results to be checked. In fact, a computer program was used to generate all the relevant 
IK(n,  m, j ) ' s  in the form of a SCHOONSCHIP program. This was then checked by using it 
to evaluate various massless tadpoles which, in the context of dimensional regulation, 
are formally zero (Capper and Leibbrandt 1974). 

Appendix 2 

We list here the result of substituting equation (3.17) in equations (3.11) and (3.14). 
These functions E l (y ) ,  E4(y )  are plotted in figures 5 and 6. 

1486123 2452789 2 4262911. 3 14442179 4 1299285 5 
E 1 ( y )  = (T+- 16 y +  64 y -  32 y - 6 4 y -  8 y 

3970445 6 U S  7 30255 8 4 f  -- 64 y - 32 -y -32y ) ( fy+1)2(217+391y+235y2+45y3)2  

(A.47) 
3933335 14370455 1 531745 2 7 1 5 3 5 8 4 2735325 5 E ~ ( Y ) =  ( 16 + 1 2 - y  + 24 48 y + 8382468 y +u5:885 ' Y  + 2 Y 

4 f  

(A.48) 
We note that the approximate roots of 

E1=0 (A.49) 

are y = -4.521, -2.042, 0,6723, -1.329*0-4026i, -1*342*0*3594i and -1,632. 
The approximate roots of 

E4=0 (A.50) 

are y = -1.475* 1*143i, -1.207*0.4938i, -1.357&0.3681i, -1.824 and -1.463. As 
can be seen, there are no simultaneous roots of equations (A.49) and (A.50). Thus, in 
contrast to the approach of Kallosh eta1 (1978), it is impossible to find a gauge in which 
all the counterterms vanish. 

Appendix 3 

In this appendix we point out briefly why the proofs of the theorems of Capper and Duff 
(1974) and van Nieuwenhuizen (1974) are inapplicable to graviton loops. If we rewrite 
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the appendix of Capper and Duff (1974) in terms of our graviton field +,, defined by 
equation (2.2) then 4,” is coupled to a conserved, traceless current J,,?. We may then 
write (Bjorken and Drell 1965, Raman 1968) 

m 

(Ol~J,v(x)Jmp(~)lO) = J d a 2 p ( d ~ , C I Y m p ( a ) A F ( ~  - Y ,  a’) (A.51) 
0 

where 

e ( d p ( 4 2 ) % y , p ( d  E C s4(pn -~)(oIJ,,(o)I~)(~IJ~~(~)I~) (A.52) 

and, as it was argued by Capper and Duff (1974), ~ ( 4 ’ )  and hence the coefficient of the 
counterterm are both positive. This is analogous to the photon self-energy in quantum 
electrodynamics where, as is well known, all the infinite contributions come in with the 
same sign. The reason why this is true is that the photon self-energy is independent of 
the gauge and hence we may choose to evaluate the self-energy in a gauge (the radiation 
gauge) in which only the two transverse polarisation states of the photon are present. 
Then, if the photon couples to a current J,, we can write 

n 

m 

(OtTJ,(x)J,(y)lo) = 5 df12p(d~,Y(d)AF(X - Y ,  a’) (A.53) 
0 

where 

e(so)p(s2)q&)  = (2d3s4 (an - d ( o  I J,(o) I n)(l ~ J , ( o )  1 0 ) .  (A.54) 

The sum over intermediate states n is only over positive norm states and p is indeed 
positive. It then follows that p is positive in any gauge. The same argument does not 
apply to the electron self-energy, which is gauge dependent. 

In order to convince the reader that the problem is totally unrelated to the fictitious 
particles which have to be introduced into non-Abelian gauge theories, such as gravity, 
we consider the theory of massless scalar electrodynamics given by the Lagrangian 

(A.55) 

where + is a complex scalar field and A, is the photon field. If we now choose a gauge in 
which the photon propagator D,, is given by 

9 = (a&* - ieA,4*)(d,+ + ieA,+) -a(a,A, -&A,)’ 

(A.56) 

then a brief calculation shows that the one-loop contribution to the scalar self-energy 
n ( p )  is given by 

n ( p ) = 6 0 ( 2 - 5 A ) e 2 1 .  (A.57) 

Clearly n ( p )  is gauge dependent and the infinite part of n ( p )  can change sign 
depending on the value of A chosen. This is due to the fact that in general the sum over 
intermediate states in the spectral function analogous to equation (A.54) includes the 
negative norm unphysical states of the photon. Exactly the same argument applies to 

t In effect we considered a theory in which only the coefficient of the spin-zero projection operator (E4) was 
non-zero. This is the case for the neutrino loop considered by Capper and Duff (1974). We could equally well 
have made the trace of Jwy non-zero and then the theorem would have implied that the coefficients of the E4 
and El projection operators are separately positive. 
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the graviton self-energy where the results of Capper et al(1973), Capper and Namazie 
(1978) and Kallosh et a1 (1978) and the present paper clearly show the gauge 
dependence of this quantityt. 
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